Friday, September 18, 2015

Table for the Half Fibonacci Series and the Algorithm 4 to 5 Series.






n
Fib n and
Fib n 1/2
Alg 4 to 5




0
0


½

1
1

2
1

2 ½
1 ½

3
2

3 ½
2 ½

4
3
4
4 ½
4
5
5
5
7
5 ½
6 ½
6
6
8
8
6 ½
10 ½
10
7
13
12
7 ½
17
15
8
21
18
8 ½
27 ½
22, 27
9
34
33
9 ½
44 ½
41
10
55
51
10 ½
72
63
11
89
78
11 ½
116 ½
97
12
144
121
12 ½
188 ½
151, 188
13
233
235
13 ½
305
293
14
377
366
14 ½
493 ½
457
15
610
571
15 ½
798 ½
713
16
987
891
16 ½
1292
1113
17
1597
1391
17 ½

2090 ½

1738, 2172









18
2584
2715
18 ½
3382 ½
3430
19
4181
4287
19 ½
5473
5358
20
6765
6697
20 ½
8855 ½
8371
21
10946
10463


13078
22
17711
16347
























Note:
Fib n ½ = 1/2 Fib( n + 2)
Eg F 19 ½ = ½ F 21
5473 = ½ 10946

F16½ = 1292 = ½ F18
= ½ x 2584

F18 ½ = 3382 ½
= ½ x F20 = ½ x 6765

F8½ = ½ F10
=27½ = ½ x 55
*************
Fn½ - Fn = F(n-2½)
F18½ - F18 = F15½?
3382.5 – 2584 = 798.5
 = yes
F15½ -F15 = F12½
798½ - 610 = 188½
=yes


 ******************************************
OK  This is how it looks when it is typed with table grid on Word Document, then copied (control c) and pasted (control v)  onto blog post.
Maybe this is better than my handwritten Tables....
There are interesting new equations and equivalences here...some are as just above.
******************************************

One can see that the 4 to 5 series follows the half Fibonacci series to some small degree,  but numbers begin to diverge widely as the Series ascends.
I have previously worked out how to micro adjust  numbers at the end of the crochet  or knit work to exactly follow the Fib and a half Series
 see 9/13/14 ie 13th Sept 2014 for 3 tables describing
progress visually, like a map.
******************************************
Next I can give you a map of how the 4 to 5 Series grows...   as soon as the diagrams are drawn........

1/8/2017    ***Column 3 on this post. shows how the 4 to 5 series grows
--------------------------------------



No comments:

Post a Comment